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Abstract

Aluminum is of interest as a constituent in Li secondary battery cathodes due to its low cost and low mass. Increased intercalation
potential for certain Al-doped intercalation oxides has also been predicted by ab initio calculations. We have synthesized single phase
LiAl Co O and LiAl Ni O solid solutions from homogeneous hydroxide precursors. In LiAl Ni O , it was found that they 1yy 2 y 1yy 2 y 1yy 2

addition of LiAlO helps to stabilize LiNiO in the a-NaFeO structure during air firing, facilitating preparation of the ordered phase. A2 2 2

systematic increase in the open circuit voltage is observed with Al content in both LiAl Co O and LiAl Ni O solid solution,y 1yy 2 y 1yy 2

providing additional support for the ab initio calculations. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Ž w x w x.Compounds LiMO MsCo 1 , Ni 2 , having the2
Ž .a-NaFeO structure space group R3m , have been exten-2

sively studied as cathodes for Li-ion batteries. The effect
of doping with other transition metal elements have also

w xbeen studied 3–5 . Compared with the transition metals,
Al has not received wide attention as a dopant, with only a

Ž .few reports on LiAl M O MsCo, Ni systems toy 1yy 2
w xdate 6–8 . However, doping with Al has gained in interest

for several reasons. Ab initio calculations by Aydinol et al.
w x9 have shown that LiAlO has a theoretical intercalation2

voltage of ;5 V vs. LirLiq, which is higher than that of
any lithium transition-metal oxide. While pure LiAlO is2

electrochemically inactive, the solid solution of LiAlO2

with lithiated transition-metal oxides can potentially in-
crease the intercalation voltage. This effect has recently

w xbeen verified for LiAl Co O solid solutions 10 . Sec-y 1yy 2

ondly, the fact that LiAlO is stable in the a-NaFeO2 2
w xstructure at temperature below ;6008C 11 suggests that

it could have a stabilizing effect of the structure when

) Corresponding author

doped into other compounds. This effect has recently been
w xdemonstrated for monoclinic LiAl Mn O 12 . Finally,y 1yy 2

its low cost and low density makes LiAlO attractive as an2

intercalation compound constituent. In this paper, we re-
port on the experimental investigation on the effect of Al
on the structure and electrochemical properties of LiCoO2

and LiNiO .2

2. Experimental

LiAl Co O and LiAl Ni O samples were syn-y 1yy 2 y 1yy 2

thesized by firing homogenous precursor powders obtained
w xby a co-precipitation and freeze-drying technique 13 .

Mixed aluminum–cobalt or aluminum–nickel hydroxides
were co-precipitated from mixed aqueous solutions of
Ž . Ž . Ž .Al NO P9H O and Co NO P6H O or Ni NO P3 3 2 3 2 2 3 2

6H O, respectively. A more detailed description of precur-2
w xsor preparation can be found elsewhere 13 . Precursors

thus obtained for LiAl Co O and LiAl Ni O werey 1yy 2 y 1yy 2

fired for 2 h at 700–8008C in air or oxygen, respectively.
To compare the characteristics of this chemically prepared,
highly homogeneous precursor with a simpler preparation
of the same components, limited experiments were also
conducted to synthesize LiAl Ni O using commer-y 1yy 2
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Fig. 1. XRD patterns for LiAl Co O obtained after firing for 2 h aty 1yy 2
Ž . Ž . Ž .8008C in air for a ys0, b ys0.25 and c ys0.5, with hkl

Ž .indicated for LiCoO I g-LiAlO .2 2

Ž . Ž .cially available Al OH , Ni OH and Li CO , which3 2 2 3

were mixed by ball-milling in a polypropylene container
using alumina milling media and then calcined at 8008C
for 24 h in air. All samples were furnace-cooled to room
temperature after firing. Calcined powders were character-

Ž .ized by TEM, STEMrEDX and X-ray diffraction XRD
using Cu-K radiation. In this paper, electrochemical testa

results are for chemically synthesized materials unless
otherwise noted.

For electrochemical evaluation, oxide powders were
Žmixed with carbon black, graphite and poly vinylidene

. Ž .fluoride PVDF in the weight ratio of 78:6:6:10. The
electrochemical test cell consisted of two stainless steel
electrodes with a Teflon holder. Lithium ribbon of 0.75
mm in thickness was used as the anode. The separator was
a film of Celgard 2400e, and the electrolyte consisted of a

Ž .1 M solution of LiPF in ethylene carbonate EC and6

Ž .diethyl carbonate DEC . The ratio of EC to DEC was 1:1
by volume. Additional details of electrochemical testing

w xare discussed elsewhere 14 . Three-electrode electrochem-
ical cells were also used to measure open circuit voltage
Ž .OCV . In these cells, the working electrode was the
LiAl Co O composite electrode, and counter and refer-y 1yy 2

ence electrodes were Li. The reference electrode and work-
ing electrode were separated from the counter electrode by
a PVDF membrane. The electrolyte was 1 M LiClO in4

Ž .EC and dimethyl carbonate DMC . The ratio of EC to
DMC was 1:1 by volume.

3. Results and discussion

3.1. LiAl Co Oy 1y y 2

XRD patterns of LiAl Co O for ys0, 0.25 and 0.5y 1yy 2

are shown in Fig. 1a–c, respectively. All samples are
single phase and have the a-NaFeO structure, space2

Ž .group R3m. Miller indices hkl are indexed for ys0 in
Žthe hexagonal setting. Peaks for the g-LiAlO phase te-2

. Ž .tragonal are barely distinguishable at ys0.5 Fig. 1c ,
indicating that the solid solubility limit is exceeded at
y(0.5 at 8008C. The solid solubility limit in our samples

w x Žis higher than that reported by Nazri et al. 8 ;25% at
.7508C . Still higher solubility may be obtainable at higher

Ž .firing temperature. Upon increasing Al content, the 006
Ž .and 108 peaks shift toward lower 2u angles, resulting in

Ž . Ž . Ž . Ž .a wider split of 006 r 012 and 108 r 110 peaks com-
pared with LiCoO . The lattice parameters calculated by a2

least squares method from the XRD data are as2.816,
˚ ˚2.809, 2.806 A and cs14.049, 14.115, 14.150 A for

Fig. 2. STEMrEDX elemental maps for Al and Co in LiAl Co O obtained after firing for 2 h at 8008C in air.0.5 0.5 2
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ys0, 0.25, 0.5, respectively. Substitution of Al results in
shorter a and larger c, increasing the cra ratio from 4.99
for ys0 to 5.04 for ys0.5. Fig. 2 shows direct observa-
tion and energy-dispersive X-ray mapping of the oxide
powder particles with scanning transmission electron mi-
croscopy, confirming that the Al and Co are uniformly
distributed throughout the particles.

The ab initio calculations give the equilibrium potential
of LiAl Co O averaged over a certain Li concentrationy 1yy 2

w xrange 9,10 . Complete intercalation curves have also re-
w xcently been computed 15 . However, exact measurement

of the equilibrium potential is difficult. We used the
observable OCV measured as a close approximation to the
equilibrium potential. The OCV of LiAl Co O wasy 1yy 2

first measured by charging the two-electrode cells at 0.05
mArcm2 to the desired Li content, then equilibrating for
15 h so that the rate of OCV change was less than 1
mVrh. Fig. 3 shows the OCV thus measured, as function
of composition for samples calcined for 2 h at 8008C in
air. Note that the OCV increases systematically with the Al
content in oxide, verifying the ab initio calculations as

w xmentioned earlier 10 . The three-electrode cells were
charged and discharged at 0.25 mArcm2 at every 12.4 mA
hrg and allowed to equilibrate for 10 h. The OCV as a
function of Li content measured in this manner is also
plotted in Fig. 3, and clearly agrees well with the two-elec-
trode results.

Chargerdischarge performance of LiAl Co O0.25 0.75 2

fired at 8008C for 2 h in air was tested between 2.0 and 4.5
V at 0.4 mArcm2. During the first charge, 182 mA hrg
was extracted at room temperature, while the discharge

Ž .capacity was 127 mA hrg energy density 488 W hrkg .
Compared to undoped LiCoO prepared by the identical2

w xmethod 13 , greater capacity fade was observed as shown
in Fig. 4. After 9 cycles, the discharge capacity decreased
to 51% of the initial value. The mechanism of this rapid
capacity fade for LiAl Co O is presently unknown.y 1yy 2

Increased capacity was obtained at 558C with capacity

Fig. 3. OCV as a function of Li and Al content prepared by electrochemi-
cal oxidation of LiAl Co O . Symbol ` represents data obtainedy 1yy 2

using a three-electrode cell, as discussed in the text.

Fig. 4. Specific capacity vs. cycle number for LiAl Co O , tested0.25 0.75 2

against a Li metal anode at 0.4 mArcm2 between 2.0 and 4.5 V at room
ŽU .temperature and 558C data obtained from undoped LiCoO .2

retention of 72% after 9 cycles. A related paper discusses
electrochemical cycling induced defects studied by elec-

w xtron microscopy 16 .

3.2. LiAl Ni Oy 1y y 2

XRD patterns of LiAl Ni O for ys0 and 0.25y 1yy 2
Ž .synthesized using simple physical mixtures of Al OH ,3

Ž .Ni OH and Li CO are shown in Fig. 5a and b, respec-2 2 3

tively. Ball-milled precursor powders were fired for 24 h at
8008C in air. The sample corresponding to ys0 exhibits a

Ž . Ž .high 104 r 003 intensity ratio and no splitting of the
Ž . Ž . Ž . Ž .006 r 012 and 108 r 110 peaks, indicating that the
obtained oxide has a highly disordered layered structure
w x17 . This result is consistent with the literature on un-
doped LiNiO prepared under similar synthesis conditions2

Ž . Ž .Fig. 5. XRD patterns for LiAl Co O . a and b correspond to oxidey 1yy 2
Ž .prepared by solid state reaction method 8008C, 24 h, air for ys0 and

Ž . Ž .ys0.25, respectively. c and d correspond to oxide prepared by
Ž .co-precipitation method 7008C, 2 h, oxygen for ys0 and ys0.25,

Ž . Ž .respectively. hkl is indexed for a hexagonal setting in d v Li CO .2 3
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Fig. 6. OCV as a function of Li and Al content prepared by electrochemi-
cal oxidation of LiAl Ni O .y 1yy 2

w x18,19 . Interestingly, the sample with ys0.25 after firing
Ž . Ž .under identical conditions shows a high 003 r 104 inten-
Ž . Ž .sity ratio and clear splitting of the 006 r 012 and

Ž . Ž .108 r 110 peaks, showing excellent layered cation order-
ing. Therefore, Al-doping is seen to stabilize a-NaFeO2

cation ordering in LiNiO , allowing easier preparation of2

ordered material by firing in air. Interestingly, the amount
of residual Li CO also decreased for the Al-doped sample2 3

compared with the undoped one.
Fig. 5c–d show the XRD patterns of oxide powers

obtained from co-precipitated precursor powders after fir-
ing for 2 h at 7008C in oxygen. Single phases of LiNiO2

and LiAl Ni O were obtained with well-ordered lay-0.25 0.75 2
Ž . Ž .ered structure as indicated by high 003 r 104 intensity

Ž . Ž . Ž .ratios and clear splitting of the 006 r 012 and 108 r
Ž .110 peaks. As in LiAl Co O , upon adding Al, they 1yy 2
Ž . Ž .006 and 108 peaks shift toward lower 2u angles,

Ž . Ž . Ž . Ž .resulting in a wider split of 006 r 012 and 108 r 110
peaks compared with LiNiO . Comparing XRD patterns in2

Fig. 5a–b, it is noticeable that by using the homogeneous
precursors obtained by co-precipitation, both the firing
time and temperature necessary to obtain a highly ordered
oxide are reduced. Note, however, that oxygen atmosphere
was used for co-precipitated powders, whereas air was

w xused for the ball-milled powders. Previous studies 20
have shown that firing in oxygen promotes synthesis of
LiNiO with a-NaFeO cation ordering. Further experi-2 2

ments are underway in order to compare the processibility
under identical firing atmosphere.

Preliminary electrochemical tests were conducted on the
well-ordered LiAl Ni O prepared by the co-precipita-y 1yy 2

tion route. The OCV was measured by charging the cells at
0.1 mArcm2 to the desired Li content, then equilibrating
for 15 h. Fig. 6 shows the OCV thus measured, for
Al-doped and undoped LiNiO . Clearly, LiAl Ni O2 y 1yy 2

exhibits a higher OCV than undoped LiNiO . These results2

provide an additional confirmation, at least qualitatively,
w xof the ab initio calculations 9,10 . Further investigation of

the electrochemical properties of LiAl Ni O solid so-y 1yy 2

lutions and a more detailed comparison with theory is in
progress.

4. Conclusions

LiAl Co O and LiAl Ni O solid solutions thaty 1yy 2 y 1yy 2

are well-ordered in the a-NaFeO structure type have been2

synthesized. The open-circuit voltage increases with Al
content in both systems, as was predicted by ab initio

w xcalculations 9,10 . Compared with LiCoO , a greater ca-2

pacity fade rate was observed in LiAl Co O . Highery 1yy 2

capacity and less capacity fade were observed at 558C than
at room temperature. In LiAl Ni O , Al-doping has any 1yy 2

additional effect of promoting the a-NaFeO structure2

during firing in air, allowing the easier preparation of
highly ordered materials.
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