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1 On the microscopic scale, the potential changes c
change over the interfaces as discontinuous jump [4,
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a b s t r a c t

The electrical potential in a battery jumps at each electrode-electrolyte interface. We present a model for
computing three-dimensional current and potential distributions, which accounts for such internal
voltage jumps. Within the framework of the finite volume method we discretize the Laplace and gradient
operators such that they account for internal jump boundary conditions. After implementing a simple
battery model in OpenFOAM we validate it using an analytical test case, and show its capabilities by
simulating the current distribution and discharge curve of a LikBi liquid metal battery.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this article is twofold: we want to model both,
the current distribution in, and charge-discharge curves of elec-
trochemical cells. For good overviews on the subject, see
Refs. [1e3]. As a first step, we will discuss only modeling of the
time-dependent cell potential.

1.1. Battery voltage, overpotentials and polarization curve

Most battery models do not describe the distribution of current
and potential. Instead, they provide only the total cell voltage,
which can be simply calculated as the difference of the open circuit
potential and the sum of all overvoltages [4e8]. We are here
especially interested in the ohmic overpotential. In many batteries,
the electrolyte has by far the highest resistance. In such cases the
en e Rossendorf, Bautzner Landstr
).
ontinuously over the electrochemi
20e23].
ohmic losses can be calculated analytically or by potential theory,
i.e., by solving a Laplace equation in the electrolyte [9e11]. More
advanced models are used for porous electrodes, but rely on the
same Laplace equation [12e16]. Even if the full potential distribu-
tion is computed in the electrolyte, all these models use in the end
only a single valued voltage loss to compute the cell potential. They
are therefore limited in many ways e and can not account for ef-
fects such as the potential drop in poorly conducting electrodes (e.g.
Se, S [17]), complicated geometries with high current densities in
partial areas of the electrolyte, local activation overpotentials, or
liquid electrodes where diverging current drives convection [18,19].

In order to account for all these effects, we need to know the
potential distribution in the cell. Fig. 1 shows a one-dimensional
example e an example which is strongly simplified. It relies on the
macroscopic approach, i.e., we do not resolve the electrochemical
double layer, and consider all phases to be electrically neutral1
. 400, 01328, Dresden, Germany.

cal double layer. Working on the macroscopic scale, we approximate the potential
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Fig. 1. Schematic voltage profile in an electrochemical cell with open (a) and closed
circuit at discharge (b). For an excellent discussion of such profiles, see Refs. [4,20e23].
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[3,13,24]. Within these assumptions, the potential jumps at both
electrode-electrolyte interfaces according to theNernst equation. As
illustrated in Fig. 1a the cell voltage is simply the difference of both
potential jumps. During operation of the electrochemical cell, the
potential jumps are directly reduced by concentration and activa-
tion overpotentials. Additionally, the cell voltage decreases by the
ohmic overpotential, as illustrated in Fig. 1b.

1.2. Modeling current and potential distributions

After describing one-dimensional potential profiles in the pre-
vious section, we will proceed with a discussion of 3-dimensional
modeling. Within continuum mechanics, potential distributions
can be obtained by solving a Laplace equation

V , sV4 ¼ 0; (1)

where 4 denotes the electric potential and s the ionic or electronic
conductivity. This simple approach is only fully correct if there are
no concentration gradients in the electrolyte [6,25] and if double
layer charging is neglected [3]. The challenge of solving equation (1)
is the potential jump between electrolyte and electrodes. Generally,
two solutions exist: the single- and the multi-potential approaches
[26]. The latter relies on the idea of defining separate ionic and
electronic potentials [27,28], i.e., several Laplace equations are
solved. The offset, i.e., the jump between the potentials, is typically
defined by a volumetric source term in an envelope layer near the
interface [29]. Such a model is ideally suited for porous electrodes,
such as the catalyst layer in a fuel cell. The porous electrode and
electrolyte are treated as superimposed continua [12,27] of finite
thickness [6]; a charge leaving the solid matrix must enter the pore
liquid [30]. The superficial charge transfer e described by Faraday's
law e needs to be transferred into only a volumetric source term
[12,24]. Such multi-potential porous electrode models are
extremely popular e for more details, see especially [12,13,30e32].
Please note that many researchers exclude the potential jump due
to the Nernst potential, but model only the jump due to the acti-
vation overpotential.

Compared to the above described porous model, the single-
potential approach is less common. It uses only one single poten-
tial field for the whole cell. The potential jump is not implemented
as a source term, but as an internal jump boundary condition. Such
models are also known as “interface models” because they assume
the interface to be infinitely thin [3]. We will implement such a
model and describe in the following how the equations are set up
and how they are solved.

1.3. Solving coupled equation systems with internal jumps

As described in the previous section, the electric potential be-
tween electrodes, electrolyte and conductors needs to be coupled.
We will denote this by the term “region coupling”. The voltage of
electrochemical cells depends, among others, on temperature and
concentration. Each of these fields is described by its own equation
e and all of them are coupled. We will denote that as “equation
coupling”. Newman's original method for coupling different equa-
tions [33] is based on block-matrices, i.e., all equations are dis-
cretized in one matrix and solved in one step [34e36]. This method
was slightly extended [37e40] and used for many different appli-
cations. For a good overview about the method, see Ref. [41]. An
alternative to block-coupling is a segregated solver: it solves each
equation separately. As the equations are coupled, this process
must be repeated iteratively until convergence is reached. On the
one hand, the block-coupled single-matrix approach is surely bet-
ter suited for highly coupled equations, and maybe for strongly
non-linear equations [42]. On the other hand, the segregated
approach is easier to implement and needs much less computer
memory. Both approaches have advantages and drawbacks e there
is not a single, and perfect solution for equation coupling.

Similarly, region coupling can be obtained by solving the po-
tential on one global mesh, or by solving a separate equation for
each conductor. The latter is well known in OpenFOAM. Using
appropriate boundary conditions, a potential jump at the interface
can easily be implemented [43,44]. However, a relatively time
consuming iteration between all regions is necessary. This can be
extremely slow [45], because the regions are coupled only at the
interface (and not in the volume). Solving the potential in all re-
gions in a coupled way in one matrix is definitely the better way.
For possible implementations of internal potential boundary con-
ditions, see Refs. [46e48].

Finally, the equation system can be set-up and solved using the
finite-difference (FDM), finite-element (FEM), discontinuous
Galerkin [49], boundary element or finite-volume method (FVM)
[2,9]. During the first years of numerical computation, the FDMwas
surely the most widely used approach for modeling potential
problems [6]. Today, numerous powerful and free FEM codes such
as deal.II [50], Fenics [51] or FreeFemþþ [52] may be used for
solving electric potential distributions. Moreover, commercial
codes such as COMSOL [53] (FEM), STAR-CCMþ [54] (FVM) and
ANSYS Fluent [55] (FVM) also allow for solving electric potentials
with internal jumps. The purpose of this paper is to provide a new
approach for the finite volume method.

1.4. Our approach

Wewill model potential distributions with internal jumps using
a single-potential approach. The set of equations will be solved in a
segregated manner, while a block-matrix will be used for region
coupling of the electric potential. We further use a multi-mesh
approach [8,45]. This means, we solve certain variables (as the
potential) on a global mesh, but others (such as concentration) only
in the electrodes. The equations are discretized using the finite
volume method, and the model is implemented in the open source
CFD library OpenFOAM v1806 [56].

2. Model

We present in this section the most simple model for the po-
tential distribution in a concentration cell. With little effort, it can



2 We use the word “cell” in section 3 in the sense of grid cell or control volume.
3 For details, see https://openfoamwiki.net/index.php/OpenFOAM_guide/

Matrices_in_OpenFOAM.
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be extended to arbitrary electrochemical cells. We use the parent
child-mesh technique, i.e., we provide one global mesh for the full
geometry and a secondmesh for the positive electrode only. Where
necessary, we map variables between both meshes. The following
simplifications apply:

� fluid flow, heat transfer and variation of the layer thickness are
neglected

� charge transfer overpotentials are neglected
� the electrochemical double layer is not resolved; we assume
discrete potential jumps at the interfaces

� concentration gradients in the electrolyte are neglected [57]
� the voltage jump is applied only at the electrolyte-positive
electrode interface

In a first step we solve the molar concentration of Li, c, in the
positive electrode as

v

vt
c¼V,ðDVcÞ; (2)

where D denotes the diffusion coefficient. We apply zero flux
boundary conditions at all interfaces except the electrode-
electrolyte boundary. Here we set the concentration gradient cor-
responding to the current density j as

Vnc¼ � j
zFD

n; (3)

where Vn denotes the interface-normal gradient, z the number of
electrons, F the Faraday constant and n the interface normal vector.

The local concentration at the electrode-electrolyte interface
determines the jump in potential, which can be computed using the
Nernst equation as [58]

D4¼ � RT
zF

lnðaÞ � hact ¼ EðxÞ � hact (4)

with R denoting the gas constant and E the equilibrium cell voltage.
Both, the Li molar fraction x and the activity a are obtained from the
Li-concentration. The activation overpotential hact, which decreases
the voltage jump at the interface, might optionally be determined
by solving a Butler-Volmer or Tafel equation [6].

Liquid metal batteries have extremely high exchange current
densities, so that their activation overpotential is typically negligible
[59]. We therefore do not need to solve the Butler-Volmer equation.
In order to avoid problems with the Nernst equation at small con-
centrations (logarithm goes to minus infinity [22]), we instead
simply define the voltage jump by a fit of the measured open circuit
potential. We save this potential jump at the corresponding face
centers andmap it to the parentmesh. Please note that the potential
jump is applied only at the interface between electrolyte and the
positive electrode (and not at the negative electrode).

On the global mesh we solve equation (1) for the electric po-
tential. Thereafter, the current density is computed as

j ¼ sV4; (5)

and mapped to the electrode-electrolyte interface where it is
needed to compute the boundary condition for the concentration.
The potential jump at the electrolyte-positive electrode interface is
accounted for when discretizing the gradient and Laplace operator
as described in the next section.

We discretize the equations using the implicit Euler scheme for
time and second order schemes for all spatial terms. The potential is
solved using a PCG, and the concentration by a multigrid solver [60].
3. Discretization of jump condition

Solving the electrical potential on one single mesh, one needs to
account for the jumping potential in two terms. The first is the
Laplace equation (1) where the potential jump will appear in form
of an additional source term. Secondly, when computing the cur-
rent density by equation (5), both the potential jump and the
discrete change of conductivity have to be observed.
3.1. Laplace operator

Within the finite volume method, the Laplace operator can be
discretized using the Gauss theorem as [61]

V ,sV4 ¼
X

f

sf SðV4Þf ; (6)

with S denoting the face area vector and ðV4Þf the gradient at the
face. The face conductivity sf is consistently discretized from the
cell centered values2 using harmonic interpolation [45]. Denoting
the potential in the owner and neighbor cell of face f by 4P and 4N
we can also write

V ,sV4 ¼
X

f

Ssf ðV4Þf ¼
X

f

���S
���sf

4N � 4P þ D4
jdj ; (7)

where D4 denotes the potential jump at the interface and d the
vector connecting both cell centers. Writing the matrix equation as

Ad þAo ¼ S (8)

we find the off-diagonal coefficients as

Ao ¼
sf

���S
���

jdj ; (9)

and the diagonal coefficients as

Ad ¼ �
X

f

sf

���S
���

jdj ¼ �
X

r
Ar;o; (10)

where the index r denotes related cells, i.e., cells which share a
common face3. Finally, the source term is

S¼
X

f

�
sf

���S
���D4

jdj : (11)

The potential jump D4 will appear only at the electrode-
electrolyte interface; for all grid cells not touching the interface
the source term will therefore be zero.

The above described procedure applies perfectly to orthogonal
meshes. It can be easily extended to arbitrary polyhedral control
volumes using the overrelaxed correction approach [60e64].
3.2. Gradient operator

Using the Gauss theorem, the gradient of the electric potential is
discretized as [61]

https://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM


Fig. 2. Electric potential distribution along a line for the one-dimensional test case.
The potential at the boundaries (a, b) as well as the voltage jump (c) and the two
conductivities (s1, s2) are provided as initial conditions.
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V4 ¼ 1
V

X

f

S4f ; (12)

where V denotes the cell volume and 4f the potential at a face. The
latter is determined from the potential of the owner (P) and
neighbor (N) cell using two continuity conditions. Firstly, we as-
sume the potential itself to be continuous (or jumping) over the
face as

4wN ¼4wP þ D4; (13)

and secondly we ensure continuity of normal currents by

sNV4N ,nN ¼ sPV4P,nP; (14)

where 4wP and 4wN denote the face potential in the owner and
neighbor cell and D4 the jump between both; sP and sN denote
(cell centered) conductivities, nP and nN the face normal vectors
and 4N and 4P the cell values of the potential. Combining both
above conditions leads to the face potential in the owner cell as

4wP ¼ f ,ð4N � D4Þ þ ð1� f Þ,4P (15)

with

f ¼ dP,sN
dNsP þ dPsN

: (16)

Here, dP and dN denote the distance between face and cell center
for the owner and neighbor cell, respectively.
Fig. 3. Experimental LikBi cell. The vessel is made of tantalum, the wires of copper. The
lithium metal is contained in a spiral made of nickel. The LieBi layer thickness cor-
responds to a uniform Li molar fraction of 0.236.
4. Validation

We use a simple analytical test case to validate our model. A 1-
dimensional bar is made of two materials of different conductivity,
and an artificial potential jump of 1 V is applied between both.
Further, a constant potential is applied at both ends of the bar, such
that a potential profile as illustrated in Fig. 2 develops. The
following parameters are used:

a ¼ 0 V; b ¼ 5 V; c ¼ 1 V;
x0 ¼ 0 m; x1 ¼ �2 m; x2 ¼ 2 m;
s1 ¼ 10 S=m; s2 ¼ 1 S=m:

The analytical solution predicts the potential profile as two
lines:

41ðxÞ¼axþ b; (17)

42ðxÞ¼gxþ ε; (18)

with

a ¼ s2
b� c� a

s2ðx0 � x1Þ � s1ðx0 � x2Þ
; (19)

b ¼ a� ax1; g ¼ a
s1
s2

; ε ¼ b� gx2: (20)

The simulated electric potential in Fig. 2 shows the jump as
expected, and fits perfectly to the analytical solution. Moreover, the
current density (not shown here) is continuous over the interface,
and fits again to the analytical solution.
5. Application to a LikBi liquid metal battery

Liquid metal batteries are discussed as cheap stationary energy
storage for fluctuating renewable energies [58,65]. We simulate a
LikBi liquid metal battery [66,67] in 3D (for a 1D model, see
Ref. [59]) e and compare with measured data. The concentration
cell consists of a LieBi positive electrode (0.1mol Bi), a LiCleLiFeLiI
molten salt electrolyte and a Li negative electrode [68]. The lithium
is contained in a nickel spiral, and the vessel is made of tantalum to
avoid as far as possible any reaction with the active materials and
the electrolyte. Fig. 3 shows the setup, and Table 1 gives the ma-
terial properties. The cell is heated from below such that the tem-
perature at the positive electrode-electrolyte interface stays at
approximately 460 �C. Ultra-dry LiI is vacuum dried for 12 h while
being heated stepwise from100 to 300 �C. LiFeLiCl is vacuum dried
for 12 h at 500�. Finally, LiCLeLiFeLiI is mixed in eutectic compo-
sition [69] and filtered through a quartz frit. The cell is cycled at 1 A
with a cycle length of 10min.

The numerical model is simplified in three ways. Firstly, we
insert a very thin gap artificially between electrolyte and vessel,
because no current is allowed to flow there. Secondly, wemodel the
negative electrode as it would consist of pure lithium. This is
justified because the electric conductivities of nickel and lithium
are very similar. Finally, we do not know the exact shape of the
electrolyte-negative electrode interface e the exact immersion
depth shown in Fig. 3 is therefore an assumption. The numerical
representation of the cell is shown in Fig. 4a. The potential is set to
0 V at the outer cable while a Neumann boundary condition cor-
responding to 1 A is applied at the negative contact. The open cir-
cuit potential at 460 �C is fitted using measurement values [70] as



Table 1
Material properties at 460 �C [73e78].

Property Li Bi salt Cu Ta Ni

r in kg/m3 490 9831 2690 2800
s in S/m 2.7,106 7.2,105 271 58,106 2:9,106 3,106
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E =V ¼ 0:19
xþ 0:41

þ 0:5 (21)

for the interval of molar fraction 0:1< x<0:3. The density of the
LieBi alloy is computed using Vegard's law [71,72], and the diffu-
sion coefficent of Li in Bi is taken as D¼ 2,10�8 m2/s [59].

Fig. 4c illustrates the electric potential field, and Fig. 4d the
profile along the axis. We clearly see the potential jump corre-
sponding to the open circuit voltage. The current density, as illus-
trated in Fig. 4a shows only an asymmetry at the bottom. Despite all
current needs to flow to the lateral cable, the current distribution in
the electrolyte is almost symmetric. Moreover, we observe strong
current in the corners, e.g. where the cable connects to the elec-
trode. The appearance of possible discontinuities of the electric
potential in these corners might be the topic of future work.

Finally, Fig. 4f shows the 10min discharge cycle of 1 A, starting
with a uniformmolar fraction of Li inBi of x ¼ 0:236. Experiment and
simulation fit very well. The corresponding Li molar fraction in Bi
after 1, 5 and 10min is shown in Fig. 4e. As expected from the current
Fig. 4. Geometric model with current pathes (a), current distribution at the electrolyte-
positive electrode interface (b) and electric potential (c) in a LikBi liquid metal battery
with a molar fraction of Li in Bi of x ¼ 0:236, as well as the vertical potential distri-
bution along the axis of the cell (d). The cell voltage U during discharge (f) matches
fairly well between experiment and simulation; (e) shows the corresponding Li-molar
fraction in the positive electrode after 1, 5 and 10min. The current is 1 A.
distribution in Fig. 4b, we find more Li in the center of the positive
electrode. In reality, this could finally lead to the formation of
intermetallic phases there, if the Li molar fraction exceeds 40% [79].

6. Conclusions

6.1. Summary

We have discussed different approaches for modeling the cell
voltage, as well as the macroscopic potential and current distribu-
tion in electrochemical cells. Special attentionwas paid to potential
theory and the coupling of equations and different conductors.
Thereafter, we have developed a three-dimensional model for in-
ternal potential jumps in electrochemical cells, and implemented it
into the finite volume method. An internal boundary condition,
included into the Laplace and gradient operator allows for arbitrary
floating potential jumps at electrode-electrolyte interfaces. As it can
compute the full cell potential in 3D on one single mesh, the model
is highly efficient and robust. It is fully parallelized and can work in
galvano- and potentiostatic mode. After validating the model by a
simple analytical formula we have illustrated its capabilities by
simulating a LikBi liquid metal battery and comparing with exper-
imental data.We have correctly predicted the discharge cycle of the
cell, and illustrated the current and potential distribution as well as
the lithium concentration in bismuth.

6.2. Applicability of the model & outlook

Our model, in its present form, relies on the finite volume
method. It is therefore well suited for electrochemical devices
where fluid dynamics plays a major role, such as concentration
cells, flow batteries, electrolysers or fuel cells. However, for simu-
lating solid-state batteries, for example, other approaches like the
finite element method might be more appropriate.

Being developed for a concentration cell, our model is extremely
simple, and therefore limited on a first view. The large number of
simplifications, as listed in chapter 2, are however not conceptional.
They can easily be removed. As an example, by simply adding a
Tafel equation for the cathode-electrolyte interface, our model
could be applied for modeling potential distributions in fuel cells.

The discretization of the Laplace and gradient operator with an
internal jump form the heart of our model. These discretization
schemes are flexible in the sense that only a face field describing the
potential jump needs to be provided. As this jump can be ameasured
value or be computed by arbitrary equations, extensions are easily
possible. Our model can therefore be employed for modeling po-
tential distributions in different electrochemical cells. Further, it has
not escaped our notice that jumps can appear in electromagnetic
fields, in temperature and potential fields due to contact resistance
[80] or in concentration fields at interfaces [81], as well. For all those
applications, our discretization schemes might potentially be useful.
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Appendix A. Convergence and error analysis

Here we will present the convergence and error analysis of the
simulation described in section 5. Basically, two main effects
determine the convergence. Firstly, the positive electrode needs to
be meshed fine enough to achieve a converged Li-concentration at
the interface. This concentration determines then the voltage jump
between positive electrode and electrolyte. Using a simulationwith
370 control volumes over the diameter as reference case, fig. A.5c
illustrates the relative error of the Li-concentration in bismuth. The
latter is calculated as the difference of the mean interface con-
centration between one mesh and the finest mesh, divided by the
concentration of the finest mesh.

Besides of the volume of the positive electrode, also the interface
between negative electrode and electrolytemust be strongly refined.
While the interface is curved in reality, it is approximated by many
small hexaedra in the model as illustrated in Fig. 5a. Considering the
Fig. A.5. Geometric model with a very coarse mesh (a), error of the cell voltage over time
bottom interface at the end of the discharge cycle depending on the number of grid cells (c),
on the grid spacing. The reference case is a simulation with 370 (c) or 600 (d) control volu
very high resistivity of the electrolyte, the resolution of the
mentioned interface will directly determine the convergence of the
ohmic voltage drop. Using a reference simulation with 600 control
volumes over the diameter, Fig. 5d illustrates the relative error of the
cell voltage e which depends only on the ohmic losses.

The error of the cell voltage and concentration is also shown in
fig. A.5e and f, but in logarithmic scaling. Following Roy [82], the
normalized grid spacing is defined as h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1=Nk
p

where N1 de-
notes the number of mesh cells of the finest, and Nk of the other
meshes. The error is calculated as jfk � fexactj with fk denoting the
solution of a mesh with Nk grid cells. The exact solution is obtained
using Richardson extrapolation as outlined in Ref. [82].

Finally, Fig. A.5b illustrates the error of the cell potential over
time e where the error is determined as the relative difference of
the experimental and simulated cell potential. The largest deviation
(�0.3%) is obviously due to a difference of the ohmic losses. The
slight decrease of error between 100 and 700 s is, however, caused
by a small uncertainty of the Li concentration in Bi at the interface
between positive electrode and electrolyte.
(comparing experiment and simulation) (b), error of the Li concentration in Bi at the
error of the cell voltage (d), and error of concentration (e) and cell voltage (f) depending
mes over the diameter; the cell current is 1 A.
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